Baicalin Protects Mice from Lethal Infection by Enterohemorrhagic Escherichia coli
نویسندگان
چکیده
Shiga-like toxin-producing Escherichia coli (STEC) O157:H7 poses grave challenges to public health by its ability to cause severe colonic diseases and renal failure in both human and animals. Shiga-like toxins are the major pathogenic factor for some highly virulent E. coli expecially Shiga-like toxin 2. Conventional treatments such as antibiotics can facilitate the release of the toxin thus potentially exacerbate the diseases. Small molecule inhibitors and antibodies capable of neutralizing the toxins are the two major venues for the development of therapeutics against enterohemorrhagic serotype E. coli infection. While promising and potentially effective at clinical settings, these approaches need to overcome obstacles such as the limited routes of administration, responses from the host immune system, which are known to differ greatly among individuals. Our previous studies demonstrate that Baicalin (BAI), a flavonoid compound isolated from Scutellaria baicalensis protects against rStx2-induced cell cytotoxicity and also protects mice from lethal rStx2 challenges by inducing Stx2 to form inactive oligomers. In this manuscript, we present some exciting work showing that baicalin is an effective agent for therapeutic treatment of STEC O157:H7 infection.
منابع مشابه
Bacterial ghosts as an oral vaccine: a single dose of Escherichia coli O157:H7 bacterial ghosts protects mice against lethal challenge.
Enterohemorrhagic Escherichia coli (EHEC) is a bacterial pathogen that is associated with several life-threatening diseases for humans. The combination of protein E-mediated cell lysis to produce EHEC ghosts and staphylococcal nuclease A to degrade DNA was used for the development of an oral EHEC vaccine. The lack of genetic material in the oral EHEC bacterial-ghost vaccine abolished any hazard...
متن کاملHuman serum amyloid P component protects against Escherichia coli O157:H7 Shiga toxin 2 in vivo: therapeutic implications for hemolytic-uremic syndrome.
Shiga toxin (Stx) 2 causes hemolytic-uremic syndrome (HUS), an intractable and often fatal complication of enterohemorrhagic Escherichia coli O157:H7 infection. Here, we show that serum amyloid P component (SAP), a normal human plasma protein, specifically protects mice against the lethal toxicity of Stx2, both when injected into wild-type mice and when expressed transgenically; in the presence...
متن کاملAcetate-producing bifidobacteria protect the host from enteropathogenic infection via carbohydrate transporters.
The human gut harbors a large and diverse community of commensal bacteria. Among them, Bifidobacterium is known to exhibit various probiotic effects including protection of hosts from infectious diseases. We recently discovered that genes encoding an ATP-binding-cassette-type carbohydrate transporter present in certain bifidobacteria contribute to protecting gnotobiotic mice from death induced ...
متن کاملProbiotic Lactobacillus reuteri ameliorates disease due to enterohemorrhagic Escherichia coli in germfree mice.
Strains of enterohemorrhagic Escherichia coli (EHEC) are a group of Shiga toxin-producing food-borne pathogens that cause severe hemorrhagic colitis and can lead to hemolytic-uremic syndrome (HUS), a life-threatening condition that principally affects children and for which there is no effective treatment. We used a germfree mouse model of renal and enteric disease due to EHEC to determine if p...
متن کاملInterleukin-1 receptor signaling protects mice from lethal intestinal damage caused by the attaching and effacing pathogen Citrobacter rodentium.
Enteropathogenic Escherichia coli, enterohemorrhagic E. coli, and Citrobacter rodentium are classified as attaching and effacing pathogens based on their ability to adhere to the intestinal epithelium via actin-filled membranous protrusions (pedestals). Infection of mice with C. rodentium causes a breach of the intestinal epithelial barrier, leading to colitis via a vigorous inflammatory respon...
متن کامل